
ENGINEERING THE IDEAL GIGAPIXEL IMAGE VIEWER

Dominik Perpeet

Fraunhofer IOSB

Jan Wassenberg

Fraunhofer IOSB

Abstract

Despite improvements in automatic processing, analysts are still faced with the task of evaluating gigapixel-scale
mosaics or images acquired by telescopes such as Pan-STARRS1. Displaying such images in ‘ideal’ form is a major
challenge even today, and the amount of data will only increase as sensor resolutions improve.

In our opinion, the ideal viewer has several key characteristics. Lossless display – down to individual pixels – ensures
all information can be extracted from the image. Support for all relevant pixel formats (integer or floating point) allows
displaying data from different sensors. Smooth zooming and panning in the high-resolution data enables rapid screen-
ing and navigation in the image. High responsiveness to input commands avoids frustrating delays. Instantaneous
image enhancement, e.g. contrast adjustment and image channel selection, helps with analysis tasks. Modest system
requirements allow viewing on regular workstation computers or even laptops.

To the best of our knowledge, no such software product is currently available. Meeting these goals requires addressing
certain realities of current computer architectures. GPU hardware accelerates rendering and allows smooth zooming
without high CPU load. Programmable GPU shaders enable instant channel selection and contrast adjustment with-
out any perceptible slowdown or changes to the input data. Relatively low disk transfer speeds suggest the use of
compression to decrease the amount of data to transfer. Asynchronous I/O allows decompressing while waiting for
previous I/O operations to complete. The slow seek times of magnetic disks motivate optimizing the order of the
data on disk. Vectorization and parallelization allow significant increases in computational capacity. Limited memory
requires streaming and caching of image regions.

We develop a viewer that takes the above issues into account. Its awareness of the computer architecture enables
previously unattainable features such as smooth zooming and image enhancement within high-resolution data. We
describe our implementation, disclosing its novel file format and lossless image codec whose decompression is faster
than copying the raw data in memory. Both provide crucial performance boosts compared to conventional approaches.
Usability tests demonstrate the suitability of our viewer for rapid analysis of large SAR datasets, multispectral satellite
imagery and mosaics.

1Panoramic Survey Telescope And Rapid Response System, Institute for Astronomy, University of Hawai‘i, USA



1 INTRODUCTION

Today, human analysts still play an important and irreplaceable part in the evaluation of images acquired by a variety
of sensor technologies such as telescopes, laser scanners and radar systems. Despite improvements in automatic
processing, increasing sensor resolutions (Fig. 1) and the availability of large storage media have resulted in the
requirement of routinely evaluating gigapixel-scale image data. In our opinion, advances in hardware and software
merit a reevaluation of image viewing concepts.

Figure 1: Increasing image sizes.

2 IMAGE VIEWER DESIGN CRITERIA

In the following, we focus on professional image analysts for the determination of image viewer design criteria. Key
characteristics of an ideal viewer fall into the following categories:

• Image fidelity

• Supported image formats

• User interaction

• Image manipulation

• Hardware requirements

One option to increase the amount of image data that can be presented to a user is to use compression. An overview of
common methods is presented in [2]. Whereas many modern compression techniques produce images that are visually
nearly equivalent to the original, they are ill-suited for professional image analysis for two reasons. First, working
with high pixel-resolution data stems from the need for more detail – otherwise an image could be downscaled before
inspection. Lossy compression would not necessarily preserve the required details. Second, for lossy compression to
be acceptable, it would have to be tailored to the different types of image data in order to preserve the features required
for successful analysis. To allow the analyst to extract all possible information, the viewer should ensure fidelity to the
original data by avoiding any loss of information.

A variety of data types from varying sources must be displayed. Although it is theoretically possible to convert
between different data representations, it is preferable to support the native types of sensor systems. Some deliver
8-bit precision integer data per channel, others 16-bit integer or even 32-bit floating point values. Additionally there
are varying numbers of channels, ranging from one channel grayscale representations to hyperspectral images with



well over 100 channels. For an image viewer to be readily usable, it should support multiple data types and also be
able to interface with existing file formats.

In order for an analyst to fully focus on the actual image data, interaction with the viewer should be intuitive and
smooth. Two important factors with a negative impact on user interaction are disruptions, as shown in [1], and waiting
times. User disruptions are avoided by only responding to user input – an example of an interruption is a popup
during normal use that informs the user of additional program functionality. Waiting times are usually the result of
computationally intensive operations that exclude further user interaction for the duration. To achieve a continuously
smooth user interaction, core features should be optimized in this regard: program startup, image loading, panning,
and zooming.

A modern image viewer is expected to perform basic image manipulation to ease image evaluation. Of these, two are
essential for analyzing data from various sensors. Because many sensors deliver data with more than three channels,
a user needs to be able to select which channels to view and map them to the visible RGB channels. Additionally,
sensors may not utilize the full range of their respective data types, e.g. images with 16-bit precision that only contain
values in the lower 8 bits. To better visualize these images, the viewer should be able to normalize the images, e.g. via
histogram equalization. These image operations should be performed without perceptible delays, writing additional
data to disk or processing the entire image when the option is selected.

Furthermore, due to continued performance increases in computing, standard workstation or even laptop computers
should be able to view gigapixel-scale image data. To this end, available hardware features must be utilized: GPU,
vectorization (SIMD: Single Instruction, Multiple Data) [4], and multicore CPUs [5].

3 IMPLEMENTATION

In the following, we will focus on the implementation of an image viewer that meets all of the design criteria. We
will first discuss overall design decisions and then provide a detailed description of the individual viewer components
(shown in Fig. 2).

Figure 2: Components of the Image Viewer.

The stated requirement of running on a laptop computer can only be met with full hardware utilization. As a result, the
implementation should use the GPU for display purposes, perform efficient disk I/O, and make use of multiple CPU



cores. For compatibility, the code should use multi-platform libraries and features whenever possible. To this end, we
decided to use OpenGL for communicating with the GPU, Qt as a multi-platform library for the user interface, and
OpenMP for parallelization. Because gigapixel images greatly exceed computer display capabilities, pre-calculated
image pyramids – successively downscaled versions of the original image – must be used to reduce the amount of data
to load from disk. By selecting the appropriate level from the pyramid, the viewer need only load data corresponding
to the viewport size, as opposed to the full image size. The pyramid levels are also tiled, enabling efficient access to
sections of the image.

Unfortunately, we are not aware of an existing file format that ensures such a data layout. For example, TIFF files are
organized in lines or tiles, and NITF also allows very flexible (and inefficient) pixel formats. We therefore introduce
an intermediate representation of the data that guarantees an efficient layout, thus enabling smooth zooming and
navigation within the image. Let us emphasize that it is not intended to replace existing formats. We convert such
images into a separate file, which can co-exist alongside the original data. Because large images require significant
time to generate, the conversion can be considered an off-line process. Significant effort can be expended in optimizing
the image to ensure subsequent viewing is fast. To that end, we have introduced a lossless asymmetric compression
scheme designed for extremely efficient decompression. The image is split into tiles to ensure good spatial locality,
and these tiles are then compressed individually to enable fast random accesses. Our novel codec includes a SIMD-
enabled predictor and entropy coder, which enables a decompression throughput in excess of 3 GB/s on a single CPU
core. A compression ratio of approximately 0.5 is reached on 16-bit, four channel satellite imagery. [6]

Our LVT (Lossless Virtual Texture) file format allows storing these tiles in an application-defined order, which can
reduce disk seeks. We store a mapping of coordinates to a tile ID, and their offsets within the file. Such metadata
(including image statistics, geographic location or any other application-defined information) is stored in individual
sections of the file. These are referenced by a section directory indicating their location in the file. Full details of the
format are disclosed in [7].

The viewer accesses the intermediate representation through a library, which includes support for efficient I/O. The
DMA (Direct Memory Access) capability of PCs allows the application to continue with other tasks while I/O is in
progress. We decompress the individual portions of a tile while waiting for the subsequent I/Os to complete. This
requires asynchronous I/O, for which the POSIX standard has defined a portable interface. We provide an extremely
efficient implementation on Windows that avoids context switches in the kernel and exceeds the write throughputs of
the ATTO and CrystalDisk benchmarks by 4% [7].

Similar to the virtual texture concept described in [3], we use OpenGL textures as a cache for tiles that were loaded
from disk. In contrast to the described virtual texture techniques, we use the CPU for our tile selector: Depending
on the current zoom level, pan, rotation and viewport size, missing tiles are requested from the LVT file. They are
stored in OpenGL textures of a fixed size (a multiple of the tile size). The size of the cache textures is determined by
the capabilities of the graphics adapter. Currently supported data (pixel) formats per channel are: 8-bit integer, 16-bit
signed/unsigned integer, as well as 32-bit floating point values. Optionally, instead of only caching previously used
tiles, prefetching tiles when idle may further increase performance.

Figure 3: A display channel (RGB) can be set to any image channel.



At the end of each render pass, the GPU vertex and pixel shaders perform simple histogram equalization and map
available data channels to display channels (RGB), as shown in Fig. 3. Display channels can also be individually
disabled. The histogram equalization consists of two possible histogram stretches: either all channels are converted
using the same factor, or each displayed channel is adapted individually. This feature is especially helpful when
viewing data from images that do not utilize the entire value range.

Because all data is loaded from disk asynchronously and decoded in a dedicated I/O thread, user interaction remains
smooth at all times. The OpenGL textures can only be accessed by one thread at a time. To avoid a reduction in per-
formance when loading new tiles, there is a time limit on uploading new tiles to the texture cache during each render
pass. The clean user interface with minimal potential for distracting the analyst provides support for seamless zoom-
ing to the mouse pointer, accurate panning, and easily accessible menu entries for channel selection and histogram
equalization (Fig. 4).

Figure 4: Screenshot of the viewer and its straightforward user interface.

4 CONCLUSION

Our efficient and responsive image viewer demonstrates that an awareness of low-level and computer architecture
issues brings into reach previously unattainable goals such as lossless compression and seamless zoom in gigapixel-
scale imagery. The viewer ensures fidelity to the original pixels, is able to import many existing image formats via
the GDAL library, supports the most common pixel formats (8-bit integer, 16-bit signed and unsigned integer, 32-



bit floating point2) with an arbitrary number of channels, allows smooth user interaction and enables basic real-time
image manipulation in the form of channel selection and histogram stretch. We have validated the performance on
SAR, multispectral, mosaic and custom rendered images with sizes exceeding 2 GigaPixels on a laptop computer.

The intermediate file format and viewer implementation are optimized for parallel processing, especially on tiles.
Therefore, a possible future extension would be to run efficient image processing algorithms such as screening for
point-like objects [8] directly on the intermediate format. Results could quickly be visualized, or even be calculated
as needed for visible tiles only, if the algorithm supports it. Future work could also include a more extensive set of
shader operations, such as advanced histogram equalization methods.

References

[1] B.P. Bailey, J.A. Konstan, and J.V. Carlis. Measuring the effects of interruptions on task performance in the user
interface. In Systems, Man, and Cybernetics, 2000 IEEE International Conference on, volume 2, pages 757 –762
vol.2, 2000. Available from: http://interruptions.net/literature/Bailey-SMC00.pdf.

[2] P. Krause. Texture compression, November 2007. Available from: http://www.colecovision.eu/graphics/
texture_compression.pdf.

[3] M. Mittring and Crytek GmbH. Advanced virtual texture topics. In ACM SIGGRAPH 2008
classes, SIGGRAPH ’08, pages 23–51, New York, NY, USA, 2008. ACM. Available from: http:

//developer.amd.com/documentation/presentations/legacy/Chapter02-Mittring-Advanced_

Virtual_Texture_Topics.pdf.

[4] J. Parri, D. Shapiro, M. Bolic, and V. Groza. Returning control to the programmer: SIMD intrinsics for virtual
machines. Commun. ACM, 54(4):38–43, 2011. Available from: http://cacm.acm.org/magazines/2011/

4/106583-returning-control-to-the-programmer-simd-intrinsics-for-virtual-machines/

fulltext.

[5] H. Sutter. The free lunch is over: A fundamental turn toward concurrency. Dr. Dobb’s Journal, March 2005.
Available from: http://www.ddj.com/web-development/184405990.

[6] J. Wassenberg. Lossless asymmetric single instruction multiple data codec. Software: Practice and Experience.
Accepted for publication.

[7] J. Wassenberg. Efficient Algorithms for Large-Scale Image Analysis. PhD thesis, KIT, 2011.

[8] J. Wassenberg, W. Middelmann, and P. Sanders. Highly efficient screening for point-like targets via concentric
shells. In Advanced Maui Optical and Space Surveillance Technologies Conference, September 2010.

2Not all current graphics adapters support 32-bit pixel values.

http://interruptions.net/literature/Bailey-SMC00.pdf
http://www.colecovision.eu/graphics/texture_compression.pdf
http://www.colecovision.eu/graphics/texture_compression.pdf
http://developer.amd.com/documentation/presentations/legacy/Chapter02-Mittring-Advanced_Virtual_Texture_Topics.pdf
http://developer.amd.com/documentation/presentations/legacy/Chapter02-Mittring-Advanced_Virtual_Texture_Topics.pdf
http://developer.amd.com/documentation/presentations/legacy/Chapter02-Mittring-Advanced_Virtual_Texture_Topics.pdf
http://cacm.acm.org/magazines/2011/4/106583-returning-control-to-the-programmer-simd-intrinsics-for-virtual-machines/fulltext
http://cacm.acm.org/magazines/2011/4/106583-returning-control-to-the-programmer-simd-intrinsics-for-virtual-machines/fulltext
http://cacm.acm.org/magazines/2011/4/106583-returning-control-to-the-programmer-simd-intrinsics-for-virtual-machines/fulltext
http://www.ddj.com/web-development/184405990

	Introduction
	Image Viewer Design Criteria
	Implementation
	Conclusion

