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Abstract

The coherence function [1] of a stationary, ergodic electromagnetic field
is the complete description of its second-order statistics [2, 3]. In a two-
dimensional aperture, this function comprises the correlations between all
pairs of points, so that the coherence is a four-dimensional function. While
coherence is a rich source of sensing data, it is almost always impracti-
cal to measure the entire four-dimensional function. Compressive sens-
ing [4, 5, 6] is a means by which one may accurately reconstruct an image
sampling only a small fraction of the coherence samples. This is accom-
plished by imposing a sparsity constraint on the possible reconstructed
images. If the data is such that the reconstructed image satisfies the
sparsity constraint, the object can be reconstructed with an exceedingly
small probability of error given a sufficient amount of data is sampled.
This approach may enable new coherence instruments that infer object
properties without exhaustive coherence data sampling. In this paper the
framework of compressed coherence sensing is presented, and an experi-
mental demonstration of compressed coherence sensing of a simple object
through turbulence is presented.

1. COHERENCE SENSING

Partial coherence is a seldom exploited property of the electromagnetic field for
remote sensing and image formation. Most instruments are imaging instruments
and treat the formed image as incoherent and do not attempt to infer coherence
properties of the source from the image. However, coherence is a potentially
rich source of information that could be used for imaging, for example imag-
ing through turbulence. The coherence function is the complete description of
the second-order statistics of the electromagnetic field. In a two-dimensional
aperture, the coherence is a four-dimensional function comprising the correla-
tions between every pair of points in the aperture. Unfortunately, the size of
the coherence function is often an impediment to its use in image formation,
as in general a large portion of this function must be measured to produce an



accurate image. If the amount of coherence data necessary for quality image
formation could be reduced, coherence-sensing instruments might be more prac-
tical. We propose compressive sensing as a means of inferring accurate images
from limited coherence data. Compressive sensing succeeds because the image
is restricted by sparsity constraints to possible images that are accurately re-
constructed by a minimum of coherence samples. To demonstrate the utility
of our approach with an experiment, we reconstruct using compressive sens-
ing techniques an incoherent object through synthetic turbulence by sampling
the coherence using an interferometer. Our demonstration shows that, within
limits, it is possible to reconstruct an object from a limited set of coherence
samples.

The coherence of the electromagnetic field in the scalar approximation is
described by the cross-spectral density

W($1=y17$27y2aw) = <E(£L'1,y1,W)*E(.’II2,y2,W)> (1)

where E(x,y) is a quasimonochromatic stochastic electromagnetic field centered
around frequency w . From the van Cittert-Zernike theorem [7, 8] we can derive
the following propagation law of the field radiated from an incoherent source of
spectral density S(r,w):

W(xllvyllaxévyéaw) = fdxdy% (2)
exp [ ((¢h — 1) % + (2 — y1)Y)]
Simply stated, the two-dimensional Fourier transmission of the power spectral
density is the cross-spectral density in the far field as a function of the difference
between the two coordinates that are correlated. To recover the spectral density
of the source, the remote cross-spectral density may be measured as a function of
spatial coordinate differences x5, — z and y5 —y} about a central point using an
interferometer and then inverse Fourier transformed to find the power spectral
density.
If isoplanatic turbulence with an optical path delay d(z’,y’) is present be-
tween the source and receiver, the cross-spectral density becomes

W(Illa ylla IIQ) %évw) = exp [% (d(xlla yll) - d(_Il25 _yé))] (3)
J dw dy 5G4 exp [ ((ah — 24)% + (v — v1)¥)]

The phase introduced into the cross-spectral density distorts the resulting image
if the van Cittert-Zernike theorem is used to inverse the cross-spectral density.
Unlike a conventional image of an object in turbulence using a lens, the cross-
spectral density measurement contains phase data that includes the turbulence
phase.

We use an instrument called the rotational shearing interferometer (RSI)
[9, 10, 11, 12, 13, 14] to measure the cross-spectral density, as presented in
Fig. 1. This interferometer consists of a beams plitter and two folding mirrors.
The beam splitter divides the wavefront to be sampled into two. Each of the
split fields is reflected and rotated by the roof prism, so that the recombined
fields have a relative rotation. The superimposed fields are measured on a sensor
array. The delay of one arm of the interferometer is varied to allow phase-shifting
to find the phase-resolved cross-spectral density.
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Figure 1: The rotational shearing interferometer.

If we consider a stochastic field E(z’,y’) incident on the rotational shearing
interferometer, the cross-spectral density W'(n, £, w) sampled at a position 7, £
on the sensor is given by

W'(n,&,w) = (E(ncosf + Esinf, —nsinh + £ cos §)*
E(ncosf — £sinf,nsinf + £ cos0)*) =
W(ncosf+ Esinf, —nsind + £ cosf,ncosf — Esin b, nsinf + £ cos )
(4)
given that one arm of the interferometer rotates the field +6 radians and the
other arm rotates the field —6 radians. Expressing Eq. 3 as a function of n and
& this becomes

Wl(na 3 w) =

exp [£ (d(ncosf + Esind, —nsin @ + & cos 0)—

d(ncosf — &sinf, nsinf + £ cosh))] (5)

[ dx dy% exp [ (£sin 62 — nsin6Y)]
Disregarding the turbulence d(z’,y’), the cross-spectral density measured by the
RSI is the Fourier transform of the source intensity, rotated by 90 degrees and
scaled by 1/2sinf. Because of this, the RSI is an ideal interferometer to use to
reconstruct incoherent sources. The turbulence adds an extra phase term to the
measurement that distorts the estimate of the source intensity. However, the
cross-spectral density in the absence of turbulence has Hermitian symmetry, that
is W'(n,&,w) = W'(—n,—£,w)* being the Fourier transform of a real function,
the spectral density of the source. If the angle 6 # 7/2, the turbulence does not
necessarily have Hermitian symmetry. Because of this disparity, the turbulence
phase can be distinguished from the phase due to the source itself. Compressive
sensing techniques are used to find the turbulence phase and the source spectral
density, partially based on this distinction.



2. COMPRESSIVE SENSING

As previously mentioned, the coherence function is four-dimensional being the
correlations of every pair of 2-D points in an aperture, while the RSI samples
only a two-dimensional subset of this coherence function. The previous section
presented a model for the coherence function of an incoherent source in the
presence of turbulence. To infer the source spectral density [15, 16, 17, 18] and
the turbulence from this subset of the coherence [19, 20], we employ algorithms
used in compressive sensing, modifying them for improved performance in the
presence in turbulence.

The conventional compressive sensing problem is framed as: find the solution
that minimzes || y — Ax || +7||x||o. In this context, y is a measurement
vector, x is the data vector to be inferred, and A is a linear transformation
between the data and measurement vectors. The constraint | y — Ax ||? is a
conventional least-squares constaint that ensured that the data conforms to the
measurements. The other constraint that minimizes ||x||o simply counts the
number of nonzero elements in the vector x. This is a sparsity constraint based
on the 0-norm (¢y) that strongly restricts the possible solutions. This constraint
might be useful, for example, if x represents image samples and it is desired to
have the minimum number of pixels be nonzero. Unfortunately as posed this
problem is NP so that the computational effort is too great for any resonably
sized image.

Rather than solve the £y problem we can pose it as a different problem based
on the ¢1-norm: minimizing || y — Ax ||? +7|x||:. The ¢;-norm is a convex
norm, and the sum of these norms is likewise a convex functional. Therefore
many convex optimization methods are available that can find the minimum
solution which is unique. One of the basic results of compressive sensing is that
minimizing ¢; always provides the same answer that minimizing ¢y would select
given that the number of measurements is sufficient and the forward operator
satisfied certain conditions [21, 22]. This result makes certain compressive sens-
ing computations practical and allows analysis of the reconstruction of sparse
data vectors.

For coherence sensing, y is a vector of measured coherence samples, x is
a desired image to estimate, and A is a linear transformation that describes
the propagation of partially coherent light, in this case the van Cittert-Zernike
theorem including turbulence. Conventional reconstruction of an image might
minimize the 2-norm of the vector x which is Tikhonov regularization. Unfortu-
nately this constraint tends to produce poor images when little data is available
because f3-norm restricts only the total energy in the image and not the con-
centration of this energy throughout the image. On the other hand, typical
images do not consist of power distributed randomly over the image, but rather
of discrete objects and surfaces that tend to have features that cluster in certain
pixels. The ¢;-norm tends to produce these images as it concentrates the energy
of the image into discrete points. Therefore the ¢1-norm can produce interesting
and useful imagery under more realistic constraints as well as be practical to
compute.

There are many procedures for finding the minimum of the ¢;-norm compres-
sive sensing problem. The algorithm used here is two-step iterative shrinking



and thresholding [23] (TwIST). Each iteration this algorithm alternates between
a shrinking step that reduces the least-squares penalty and a thresholding that
reduces the ¢1-norm. When the minimum is reached to a particular accuracy,
the directions of the correction gradient for the least-squares and the ¢; norm
oppose as is needed in any Lagrange multiplier constrained problem, and the
iteration may be terminated.

Geometrically, this process has an appealing interpretation. The surface of
a constant squared-error is a hypersphere. On the other hand, the surface of
constant ¢; is the surface of a polytope bounded by hyperplanes called the ¢
ball. The solution is typically the intersection between the hypersphere and a
corner of the ¢ ball. Because the corners of the ¢; ball are sharp, small errors
in the data tend to not change which elements of the vector x are nonzero, as
this would involve switching the solution to another corner where the ¢; ball
touches the sphere. Therefore the sparsity constraint is robust against error.

A block diagram of the modified TwIST algorithm is presented in Fig. 2. The
least-squares constraint is enforced using gradient-descent. The /1 constraint is
enforced by soft-thresholding the elements of x that places the solution on a
corner of the ¢; ball. However, without modification the algorithm does not
account for the turbulence phase. The turbulence phase effectively modifies the
propagation operator A. Therefore each iteration both the image and turbu-
lence phase are estimated. The first step is a shrinking step that applies the
least-squared constraint to the Fourier transform of the data. The current es-
timate of the phase is applied to the Fourier data estimate, and the data is
converted to the spatial domain using the inverse Fourier transform to form an
image estimate. The estimated intensity of the spatial-domain image is soft-
thresholded to apply the sparsity constraint. The Fourier transform returns the
spatial-domain image to the Fourier domain data. The phases of the sparsely
constrained image and the current turblence-aberrated image are subtracted to
form a new turbulence phase estimate. The data is then underrelaxed to sta-
bilize the iterations. Iteration continues until the iterations produce a minimal
change.

3. AN EXPERIMENTAL DEMONSTRATION

To demonstrate the use of compressive sensing to correct turbulence, we observe
light emitting diodes through an aberrating phase screen using the rotational
shearing interferometer, as detailed in Fig. 3. The LEDs emitted wavelengths
in the yellow region of the spectrum, and has their plastic lenses sanded off to
nearly the LED chip die to produce isotropic and incoherent radiation. These
LEDs were collimated by a lens to place their image at infinity as would occur for
stellar imaging. An iris eliminates vignetting effects from the collimation lens.
A phase distortion plate is placed behind the iris to produce an instance of the
phase distortion caused by turbulence. This plate was constructed by dripping
polydimethylsiloxane (Sylgard 184) silicone onto a microscope slide and then
heating with with a heat gun to cure it quickly before the surface became more
uniformly flat. A second lens relays the partially coherent aberrated field to the
entrance of the RSI. The RSI collected the intensity interferograms as the delay
between the two arms of the interferometer was varied. The interferograms at
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Figure 2: A block diagram of the compressive sensing algorithm used to find
the unaberrated image and a turbulence estimate.

four delays Io,Ir 2,1 ,13-/2 With phases separated by /2 were summed to find
the coherence estimate using the formula W = Iy + il /5 — Ir — il3; /5. The
modified TwIST algorithm was applied to the coherence estimate. The constant
7 was chosen to be the average intensity of all the points in the image with an
intensity more than 10% of the maximum intensity in the image. This ensured
that the image would be sharpened with the soft-thresholding, but not overly
so as to remove significant features from the data. The forward operator of the
TwIST algorithm was weighted to favor low frequencies in the image as these
are less affected by turbulence.

The results of the experiment are in Fig. 4. The image of the LEDs assuming
no distortion is present is in part (c). The aberration substantially distorts the
image. The estimate of the coherence function without the turbulence is part
(a). The real part of the complex phase of the estimated phase screen of the
distortion is part (b). This shows that the phase screen and the object can
be jointly estimated. Part (d) is the estimated object. The algorithm clearly
improves the quality of the image, whereas it would be hard to discern the three
LEDs from the original aberrated image.

As a control experiment, we performed the same imaging but without a
phase distortion plate as shown in Fig. 5. Part (a) is the reconstructed coherence
function without turbulence, which resembles that of Fig. 4. The phase of the
distortion is estimated to be almost zero in part (b). Part (c¢) is the image of
the LEDs directly computed from the unchanged sampled coherence data. Part
(d) is the image produced by the algorithm. Because of the L1 constraint, the
algorithm improves the image of the LEDs slightly, sharpening the points. The
control experiment suggests that the algorithm does not merely deconvolve the
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Figure 3: Diagram of the setup to measure the cross-spectral density from LEDs
with a phase distortion.
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Figure 4: Results of compressive sensing reconstruction of three LEDs aberrated
by turbulence. (a) The reconstructed coherence function of the LEDs without
turbulence. (b) The estimated phase of the aberration. (¢) The image neglecting
turbulence, showing the distortion produced by turbulence. (d) The estimate
of the source intensity without turbulence.
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Figure 5: Results of a control experiment of compressive sensing reconstruction
of three LEDs not aberrated by turbulence. (a) The reconstructed coherence
function of the LEDs. (b) The estimated phase of the aberration, which is
close to null because no turbulence is present. (c) The image of the original
source. (d) The estimate of the source intensity, which improves the image
quality because the L1 constraint sharpens the points slightly.

image directly, but actually estimates the phase and applies this phase to the
sampled coherence to produce an improved image.
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